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Abstract—In this paper we present the basics of acoustics, dif-
ferent kinds of localizations, and then explain and compare a set
of acoustic-based localization techniques that make use of off-the-
shelf hardware like mobile phones and personal computers. The
basics of each technique are visually explained and advantages
and disadvantages of each approach are shown.

Index Terms—Acoustic Localization, Sound Context Recogni-
tion, Localization Techniques

I. INTRODUCTION

KNOWING the location of a mobile device in an indoor
environment can be very useful – Examples for this

are indoor maps, home-automation, or e.g. observing the
position of patients in medical treatment – the list of possible
applications seems almost unlimited; Context-awareness is
becoming more important every day [1].

While outdoor localization techniques like GPS are already
widely in use, there currently is a lack of accurate and robust
indoor localization techniques. There have been proposals to
use RF-based localization [2] for indoor environments. While
these can provide accurate results, they also suffer form a
high setup cost, as the entire localization area has to have
reliable WiFi-reception from multiple access points. Studies
have shown that this is not the case in all countries [3].
Because of this limitation there is a concrete need for a low
cost alternative that provides approximated localizations while
focusing on a low setup cost: Acoustic-based localization.

Why is context-awareness such an important factor, and
what are the requirements to localization techniques? To
answer this, one should first have possible use-cases in mind.
These are some example use-cases for localizations that come
to mind:

1) Shopping Enhancement: One can imagine an application
running on your smart-phone that would display offers on
the fly as you are getting close to a specific store. Using
localization, these offers can be fitted to the concrete, relevant
environment.

2) Medical Patients: Imagine a person that is ill, and needs
medication on an hourly basis. And imagine that person using
his or her smartphone to remind him or here of the need for
medication. It makes sense to ensure that this person carries
around the smartphone at all time. Localization techniques
could be used to determine whether the patient is carrying
the phone in his/her pocket.

3) Indoor Maps: Did you ever get lost in a huge mall?
Since outdoor localization techniques like GPS do not work
well within indoor-environment, it makes sense to search for
alternatives here.

4) Door Badges: Doors could automatically detect whether
authorized persons are in its direct environment, and open on-
demand. Instead of carrying around extra key fobs or badges,
the users smartphone could accomplish this task.

5) Printing documents: In a huge company buildings with
a lot of printers, you might not know where the next printer
in the area is. Localization can help you find it, and could
automatically cause the printer to print the document for you
when you are near – without looking up its name or place
before-hand.

All these examples are merely scratching the surface of
what is possible, but they give a good insight into what is
expected from the localization techniques used. Some of these
examples can live with a high margin of errors; for others this
could be fatal. Because of these different requirements, distinct
localization techniques each serve to a different subset of these
goals. [3]

In this paper we will explain the relevant basics of acoustics
(Section III), then dive into the area of context localization
(Section IV) by explaining the different kinds of localizations.
The main part of this paper will then focus on explaining four
different localization techniques: (1) Distance-based Localiza-
tion (Section V), (2) Localization via Trilateration (Section
VI), (3) Background Spectrum Localization using Matching
Pursuit (Section VII), and (4) Material Spectrum Localization
(Section VIII). For each technique we will first describe
the technique, and later on show advantages and potential
limitations.

II. OFF-THE-SHELF HARDWARE

Seen from a theoretical perspective, it would most likely be
easy to develop a new indoor positioning system that uses a
2D array of sensors (e.g. attached to a wall) to detect GSM
beacons from smartphones, and uses them to localize the user
within a room. And given enough sensors, it would also be
rather easy to get this system accurate and noise-resistant
enough for its intended application. So why is this not the
solution to indoor localization? What is the down-side?

Deploying such an system in one room for an unique kind of
application might be reasonable, but deploying it to every room
in the whole world for a generic set of applications? The setup
cost for such a system would be immense, and just not feasible.
Although indoor localization is something very much preferred
to be accomplished, it is not something that is substantial
to our presence as human beings; nothing substantial to the
survival of human kind; nothing that would solve the problem
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of world hunger. This is why such an technique - if desired -
has to have a reasonable setup cost in order to be successful.

So why shouldn’t one use what already exists? Most persons
today are running around with a smartphone in their hands – a
smartphone very well capable of recording and playing sounds.
In addition to this many publicly accessible rooms have a
computer hidden away somewhere. If one can combine the
existing resources, and create an accurate and reliable indoor
localization system that can also be set up at a reasonable cost,
then this system has the potential of getting widely deployed
around the globe in a matter of months.

For this reason it makes sense to focus on existing, or cheap
off-the-shelf hardware for these techniques (cf. [4]). Acoustic
localization fits well into this perspective as the hardware
required for localization is already distributed in most places,
and processing is simpler when compared to other techniques
like e.g. RF localization.

[1], [3], [5]

A. Smartphones

In this paper, we consider “off-the-shelf hardware” to
especially also include smartphones. This makes sense as
smartphones have become an integral part of our lives, and
most people using application in need of context-awareness
will therefore also carry around a smartphone. As they do not
put any additional load on the setup cost, they are therefore
considered to be part of the existing infrastructure.

Also, since modern smartphones contain several different
kinds of sensors (e.g. accelerometers, microphones, GPS,
multiple cameras, . . . ), they present a great target for deploying
enhanced localization applications without the need of any
additional hardware.

III. BASICS OF ACOUSTICS

Before diving into the different sound-based localization
techniques, it makes sense to talk about the basics of acoustic
waves first.

So what is an acoustic wave? An acoustic wave is a
pulsating wave traveling through a medium (e.g. air) causing
periodical increases and decreases in pressure. An important
variable in this context is the speed of sound, which describes
the distance sound waves can travel in a medium in a specific
time.

cair = 343.2m · s−1

Fig. 1. Speed of sound in norm-atmospheric conditions at sea-level

It is noteworthy that this speed is very much lower than the
speed of electromagnetic waves, which is close to the speed
of light (roughly 299 792 km · s−1 in air). As this variable
will be used by some of the localization techniques described
in the next sections, it is also important to know that the
speed of sound greatly depends on atmospheric conditions like
temperature and humidity, and therefore can change greatly
over the course of a day [6], [7].

min f [Hz] max f [Hz]
audible for humans 20 Hz 20 000 Hz

human speech 1 024 Hz 8 192 Hz

Fig. 2. Common audio frequencies [7]

p(t)

Fig. 3. A simple sinusoidal wave resulting in a sound with a fixed-frequency.

A. Describing sound waves

Whereas simple sinusoidal waves can be described by the
two parameters frequency (number of repetitions in a fixed
time, e.g. 5 Hz means 5 repetitions of the same cycle in one
second) and amplitude (range from maximum to minimum
value), most sound waves are of more complex nature: Several
distinct, simpler waves are superpositioned on each other at
different time ranges, and thus can create waves similar to the
one seen in figure 4.

p(t)

Fig. 4. A random sound resulting from several superpositioned waves. Sound
can described as relative pressure over time.

When looking at the digital world, there are several different
techniques available for describing these compound waves:

1) ADC: The first technique is called “analog-to-digital
conversion”. In this technique the sound wave is sampled
at different moments in time at a fixed frequency, and the
current value (meaning the current/relative pressure present) is
converted into digital form by comparing the existing voltage
at the recording device with different reference voltages. Using
this principle it is possible to create a stair-like function for
the acoustic wave. An important restricting factor here is the
rate by which the sound is sampled: The Nyquist-Shannon
sampling theorem dictates that in order to correctly analyze a
sound wave with the frequency f , the sampling device needs
to sample this wave with more than double that frequency
(2 · f ).

As we are talking about off-the-shelf hardware in this paper,
and the usual sound controller in a mobile phone or PC has a
maximum sample rate of 44.1 KHz, this limits the spectrum
that we can use for localization to the band from 0 Hz to
22.05 KHz [1], [3].

The obvious advantage of this technique is that – given
a high enough sample rate – the signal can be perfectly
reconstructed. On the other hand one has to consider that the
amount of data required for storing this data increases linearly
with time – even for very simple sinusoidal sounds.

2) FFT: Another analytical technique which takes up less
space at the cost of the time-component is the Fast-Fourier
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Transformation. The basic principle behind this technique is
that each sound wave can be seen as a collection of super-
positioned sinusoidal sound waves of different frequencies,
and thus every repetitive sound can be represented as a
weighted-combination of those waves [7]. This obviously only
works lossless as long as the sound wave only consists out
of a repetitive pattern, as simple sinusoidal waves cannot
encompass the nature of a sound changing to a different sound
over time. On the other hand this technique allows one to
directly see the energy of every frequency directly, which is
useful when classifying different sounds.

B. RF versus Acoustics

Since there are known implementations for WiFi/RF-based
localization algorithms (e.g. RADAR [2]), it makes sense to
discuss the differences between RF and acoustic waves:

1) Wave type: Radio waves are high-frequency (3 KHz
- 300 GHz) electromagnetic waves which do not require
a medium for transportation, and thus they also work in a
vacuum/space. Acoustic waves on the other hand are directly
depended on the properties of medium they are travelling
through [6].

2) Obstacles: Since radio waves do not rely on mechanical
vibrations, they can easily pass through most materials. Acous-
tic waves are usually limited to the room where they originate.
This is even hardened by the fact that most buildings are
constructed in a way that should prevent acoustic cluttering,
and thus the sound-absorption of these walls is strengthened by
design, whereas the reverse is true for RF waves. As acoustic
waves are limited to a room, they can be more reliable for
in-room-based localization than RF localization [8]–[10].

3) Measurability: RF operates at very high frequencies.
This means that its pure waveform cannot be recorded using
off-the-shelf hardware, but instead only some commonly avail-
able factors like Signal Strength or the data contained within
the RF signal can be used for localization. Acoustic waves, on
the other hand, operate at much lower frequencies, and their
distribution speed is lower. Taking this into account, standard
off-the-shelf hardware can be used to analyze acoustic waves,
and additional data like time-of-flight and frequency distortions
can be used as features for localization [10]–[12].

4) Annoyance: It would be very annoying if all sound-
based localization techniques would require the room to be
flooded with a mass of sounds. While this is a good option
for developing and testing a localization technique in the
first place, this would be a show-stopper for all sound-based
localization techniques when deployed into real use-cases. To
solve this issue, there are two simple solutions: (a) only use
passive techniques which don’t actively send out sounds, or (b)
use a frequency spectrum which cannot be heard by humans,
but which can still be detected by off-the-shelf hardware.
Studies have shown that the major amount of casually available
sound-hardware is able to emit sounds at a frequency base
around 21KHz, which is in the area of inaudible sound waves
[10]. Also, there have been experiments to well-sounding
sounds and melodies for localization [10]. This could e.g. be
used in a mall where music is an accepted “background noise”.

IV. LOCALIZATION BASICS

Since the basics of sound propagation are now clear, the
remaining part of this paper will deal with the different sound-
based localization techniques. The process of localization
deals with detecting an approximative physical or logical
location for an object by making use of features available in
the environment.

A. Types of Localizations

Localization is not just localization – One can distinguish
between different types of localizations; each with its own pur-
pose. Different localization techniques give different results.
While e.g. a position in the (longitude, latitude) form seems
like a reasonable approach first, absolute coordinates are not
necessary in most cases, and can be disadvantageous in certain
situations.

localization type localization
absolute1 (51.42716 N, 6.800703 O)

relative (5,−3)
discrete symbolical noisy, large hall

concrete symbolical LB103, Duisburg

Fig. 5. Examples for different localizations for the same object

1) Coordinate-based localization: As previously men-
tioned, the most obvious approach of describing the location
of an object is some form of coordinate – be it a simple two-
dimensional (x, y) tuple, a three-dimensional (x, y, z) position
relative to some point of origin, or a latitude-longitude tuple
describing the objects position on our planet earth using a well
known standard.

The advantages of such an approach are obvious: It is
very easy to determine the distance between two objects,
and one can also easily transform the coordinates into other
coordinate-based system by a simple transformation matrix.
Also, as most existing localization techniques (GPS, GSM-
based localization, . . . ) use similar notions, existing techniques
can be used. Thus it makes sense to stick with this system
further.

However, from this numeric approach there are also clear
disadvantages: Imagine two rooms right next to each other,
and a person standing exactly at the border between those
two rooms. Since localization is not exact, but prone to errors
instead, the person might end up being detected in the room
right next-door (cf. figure 6) instead of where they are really
standing. All techniques relying on coordinates are therefore
prone to classification errors resulting from environments
changing rapidly over small amount of space (e.g. a wall
separating two spaces).

For applications relying on concrete classifications, this
error can be severe. Just imagine a phone which is supposed
to automatically mute itself in meeting rooms. If too close
to a wall, the phone would constantly (and randomly) switch
between the muted and unmuted state. In the worst case that
would cause the application to permit what it was actually
supposed to prevent from doing.

[1], [11]
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Room A Room B

Fig. 6. Error margin for coordinate-based localization (green: real location,
dashed: error margin, yellow: localizations without side effects, red: wrong
classifications)

2) Logical/symbolical localization: Another approach to
localization are logical, or symbolical locations. Instead of
determining the objects physical location in the world, one
can also determine the type of the environment the object is
in. These can be abstract classifications like e.g. “Object A is
on a table”, “in a meeting room”, “in a pocket”, which can be
determined by using analyzing the sound spectrum (cf. section
VII), or concrete classifications like “Object B is in room
LB103”, or “B is in the Starbucks on 42nd Street crossing
9th Ave”.

Whether one uses an concrete or abstract classification
depends on the kind of information available: Abstract clas-
sifications can mostly be determined by using pre-defined
rules/example sets for those classifications; concrete classi-
fications require some person to set up the system for the
environment before first using the system, which can result in
a significant work load.

As hinted above, the big advantage of abstract symbolical
localizations is that they can be established with a lower setup
cost for the third party using the system. For most obvious
context-aware use-cases (see section I) a symbolic location
is enough, and thus one does not need to go through the
effort of calculating a exact coordinate-based position. Since
most symbolic-localization techniques are more focused on
the acoustic features of an environment instead of positional
features, the risk of the previously mentioned “room-hopping”
is lower here.

[9], [12], [13]

B. Goals

To be able to compare different localization techniques,
we first have to establish different criteria for evaluation.
Although we focus on different use-cases (see section I), we
can establish some basic properties which are – in general
– preferable if present or absent. Thus we can distinguish
between these major goals:

1) Accuracy: Obviously we do not want the technique in
question to just spill out random results – they should have
some accuracy with where the object really is. We are trying
to get the highest degree of accuracy while keeping the setup
cost as low as possible, and while remaining impervious to
noise.

2) Noise-resistance: Unlike usual test scenarios where all
environment conditions are static, there are a lot of things
that can change in a real-world scenario. The weather might
change, and thus cause a drop in humidity, which might

affect the distribution of sound waves. Or there might be a
random noise source (lets call it “troll”) in the scenario, which
emits random sounds and thus might try to alter/disturb our
localization. The technique should be resistant against those
noises occurring in the scenarios for which the localization
technique is intended. We can distinguish between static noise
(noise always present in an environment), random noise (e.g.
people chatting) and noise caused by slow changes in the
environment (e.g. weather or air-conditioning systems) [3].

3) Setup cost: Since we want to use off-the-shelf hardware,
any extra setup cost – be it through extra hardware, or through
extra man-hours – should be kept to an minimum so that the
techniques can be used by a wide range of people without
high additional effort.

Accuracy

Noise-resistanceLow setup-cost

Fig. 7. Each criteria inversely effects the other two criteria

It is obvious that all these criteria influence each other. The
more hardware you throw at something, the higher accuracy
you can achieve; an higher demand in accuracy results in a
smaller margin in error, and thus a higher demanded noise-
resistance, and a higher noise-resistance can again be achieved
by (again) “throwing more hardware” at a problem, which
increases the setup cost.

C. Testing architecture

When designing techniques for localization, testing these
algorithm is an important aspect. It is also one that can easily
be done wrong. Testing the algorithm with only a limited set of
data is bound to produce unrealistic evaluations. Think going
around a campus and collecting different sound samples at
different locations is enough? It is certainly necessary, but
when e.g. taking into account the differences between day and
night, or weekday and weekend at an university campus, it
becomes obvious that there is a lot more to consider. The set
of samples has to be diverse enough to encompass differences
in location, time, hardware and weather, as all of these can
influence noise-levels and important factors like speed of
sound.

Once a set of enough data has been collected, the algorithm
has to be tested against this set of data. One possible way
of doing so is the leave-one-out classification [3]: The set of
available samples is divided into a set of known information
which is used for classification/localization, and an unknown
test set given to the system to be tested. As these two sets
can be arbitrarily chosen out of the set of data available, a
large number of different test cases can be constructed from
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a relatively small data set, without requiring any physical
work like e.g. running around different rooms collecting test
values. The same data can also be used to compare different
localization techniques against each other so that one can find
the optimal localization technique for a certain scenario.

As the basis for localization have now been satisfiably
conveyed, we can now focus on the different localization
technique implementations.

V. DISTANCE-BASED LOCALIZATION

The simplest form of position-based localization is to de-
termine the distance between two objects. A system capable
of doing so could potentially determine whether two objects
are in the same room (e.g. by checking the condition “sound
can be heard and target is closer than 20 meters”) by using a
single sound source and a single receiver [8].

In this section the Robust Range Estimation technique by
Lewis Girod et al. will be presented as an example, which is
based upon a localization-sound which is being emitted from
the speaker (e.g. a smartphone), and is received by fixed-
position microphone (e.g. a computer workstation). Speaker
and microphone are both inter-exchangeable since direction is
of no importance.

A. Making yourself heard

As sound is something which present in nearly all situations,
one cannot assume that every sound wave that gets recorded
by the receiver is actually from the sound source which is
to be localized. In order to distinguish the localization-sound
from random environment noise, the sound has to be unique
and distinct to its environment. The easiest way to achieve
this is to create a frequency-function/pseudo-noise sequence
which is played by the speaker, and later on matched against
by the receiver by using a matching/correlation function
f(received, expected) which peaks when the received and
expected sounds are most similar [8]. This, however, puts a
small limitation on this technique: The receiver always has to
know the kind/characteristics of the sound being played by the
emitter.

B. Time of flight

In order to determine the distance between sender and
receiver, the time of flight of the sound waves is considered.
If a sound is emitted at t0, and received at the microphone at
tr, the distance between both can be calculated with:

d =
(tr − t0)

speed of sound
(1)

As the speed of sound is dependent on atmospheric con-
ditions, and changes up to ten percent during the same day,
assuming it to be a constant would cause major inaccuracies.
To help against this the speed of sound can be calibrated by
calculation d along a fixed, known distance, e.g. the distance
between speaker and microphone in a smartphone [8].

(a)

(b)

(c)

d

Fig. 8. *
(a) Distance-estimation by using the time of flight
(b) Calibration of the speed of sound using a known distance
(c) Obstacles in the path cause a longer signal-way, and thus
causes over-estimation

If the path between sender and receiver is blocked (see
figure 8c), and there therefore is no line-of-sight (short: LOS)
between both objects, the distance estimated by the algorithm
will cause an over-estimation: The detected distance will be
higher than the actual distance. While is this one potential
error source, it is noteworthy that this technique can never
under-estimate any distance since this would require a sound-
wave to warp in space. Thus this error is bounded to one
direction, and classification algorithms could consider this in
their calculations [8].

C. Synchronization

In order to determine the times t0 and tr correctly, sender
and receiver both have to be synchronized. One easy way
of to achieve this is to use an RF link for transferring the
begin localization message, as electro-magnetic waves travel
at speeds close to light as they are not bound to a specific
medium [7].

D. Hardware-delay

Most off-the-shelf hardware has one issue when it comes to
calculating the time of flight: Hardware and software delays.
Most sound-cards introduce a fixed delay of up to 50ms while
sampling [8], and – since most computers and smartphones
run non-real-time kernels - additional software delays are
introduced by kernel schedulers and sound drivers.

Several solutions are possible to help against this delay: (a)
custom sound card drivers can minimize the error introduced
by schedulers since assigning a timestamp to a sample can
occur at a much earlier stage. (b) the calibration method
described in figure 8c can also be used to determine the
fixed delay if the speed of sound is known. and (c) averaging
multiple localizations can help against dynamic delays caused
by schedulers.



CONTEXT RECOGNITION SEMINAR – ST2012 – TOPIC: SOUND-BASED LOCALIZATION 6

E. Echo

As indoor rooms are prone to echo, the same sound waves
might be received multiple times, causing the matcher function
to output multiple matches. If an echo from a localization-
sound is used, it will cause even more over-estimation.
To help against this the strongest and earliest peak in the
matching/correlation function has to be used, and different
localization attempts should use distinct probing sounds.

F. Evaluation

This simple, yet effective algorithm allows for simple dis-
tance/presence based localization, and can achieve accuracies
in the cm level [8] if calibrated to a specific set of hardware. In
the worst case (blocked sight, random delays) this algorithm
will cause slight over-estimation, which has to be considered
by the application using the information.

VI. LOCALIZATION VIA TRILATERATION

Since knowing only the distance between two objects is
not always enough, it is desirable to know the real two-
dimensional (x, y) or three-dimensional (x, y, z) position of
an object in the room. In order to achieve this using the time
of flight technique, trilateration can be used.

The technique presented here is a result of the works of
James Scott et al. in their paper “Audio Location: Accurate
Low-Cost Location Sensing” [11].

A. Trilateration

Fig. 9. To localize an object with a 2D/3D-position at least three receivers
are required

The setup for this technique consists out of at least three
receivers, which are – in optimum – placed around the sound
source while having an equidistance between each receiver
[11]. It is assumed that each receiver has a fixed location
which is known to the system. These receivers could e.g. be
the personal workstations of employees in a company building.
Similar synchronization and matching techniques as described

in section V are used to calculate the time of flight ti between
the sender and each receiver ri.

The distance between sender and receiver i shall be di:

d =
(ti − t0)

speed of soundi
(2)

As the distance is not bound to a specific direction, one
can imagine it being a circle around every receiver. The
localization/intersection point (px, py) we are looking for can
then be found at the intersection point of all three circles (see
figure 9). It can be calculated with a linear system of equations
of circle-equations:

d21 = (px − x1)
2 + (py − y1)

2 (3a)

d22 = (px − x2)
2 + (py − y2)

2 (3b)

d23 = (px − x3)
2 + (py − y3)

2 (3c)

As the quadratic equations will yield two solutions, the two
unknowns px and py need to be solved with at least three
equations to correctly determine the point of origin. At this
point it also becomes obvious that any more receivers would
result in an apparent overfull equation system. But this is only
the case because the system of equations above represent an
optimistic version without any margin for errors – in reality
one would not consider the border of each circle to be a line,
but to be a ring instead. More receivers can be used to detect
and reduce this error.

[7], [11]

B. Advantages

The advantages of this technique over Distance-based Lo-
calization are apparent:

1) 3D Positions: This technique does not limit localization
to a mere distance between sender and receiver, but allows for
relative and absolute positioning within a room.

2) Multiple receivers: When using multilateration (more
than three receivers), the errors introduced by each time of
flight measurement, and the errors caused by a blocked line
of sight or similar can be lessened, and so the accuracy and
robustness of this system scales with the numbers of receivers.
This basically means that – given enough hardware – one can
get the system as robust as one likes.

3) Less line-of-sight issues: With redundant receivers
blocked line-of-sights become less of an issue, as an over-
estimation spike can be detected and systematically ignored.

C. Disadvantages

There are, however, also some disadvantages to this tech-
nique:

1) Distribution of receivers: Receivers have to be evenly
distributed across the localization area, as otherwise the margin
of errors will increase as nodes right next to each other are
subject to the same erroneous measurements. This is especially
an issue when considering the z-axis and looking at regular
office spaces: As all workstations are usually located on the
floor, precision on this axis suffers.
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2) Cost of setup: Whereas the previous technique could go
with just one receiver, we require at least three to be able to
estimate an position using this technique. This does not only
require more hardware, but also a significant contribution to
the setup (e.g. distance calibration) of each receiver.

3) Two-Room-Problem: Small errors in localization might
result in huge mistakes in classification, as described in section
IV-A1.

VII. BACKGROUND SPECTRUM LOCALIZATION

All the previous techniques have been using the principle
of time of flight, and thus are prone to errors resulting from
wrong time measurement. There are, however, also techniques
that do not rely on the time a signal takes, but instead
use features of the sound wave itself to create a logical
localization.

This section focuses on the works of Martin Azizyan et
al. in the paper “SurroundSense” [9], and on the MP-based
feature detection as described by Selina Chu et al. [13].

A. Background Spectrum

SurroundSense assumes that each room has a different
ambient fingerprint. Although this technique does not merely
focus on sound, but instead also includes visual and other
feedback, the sound part is still of importance.

The goal is to create an unique fingerprint (or, in
other words, a hash-value) uniquely describing the current
room/environment, which is then compared with existing
fingerprints in a fingerprint database. The closest matches
with existing fingerprints, which can e.g. be determined by
a k-nearest neighbor algorithm [7], are then combined into a
localization result.

B. Fingerprinting

To create a fingerprint, the recording device first captures
the environment sound over a fixed period of time. There are
many different ways of classifying the sound. We will focus
on a technique called “Matching Pursuit” (short: MP ) [13].

The principle of MP is that given a sound s and a dictionary
of existing sound-pieces D, one can calculate a weighted sum
that completely describes the sound s (eqn. 4).

s =

|D|∑
i=1

wi · di, di ∈ D, (D ⊂ Sounds, s ∈ Sounds) (4)

w = (w1, w2, . . . , w|D|) ∈ R|D| (5)

An example: The environment sound (starbucks) and the
dictionary d would produce the weight-vector:

d := (coffeemaker, people, hamster, door) (6)

weights(starbucks) = (0.5, 0.3, 0.0, 0.2) (7)

Although this already produces a fingerprint of some sort,
is it not guaranteed that two similar sounds will produce
the same fingerprint. If the dictionary also contains atomic-
samples like e.g. a 1KHz-sound, . . . , one could either use
the fully assembled coffeemaker sound, or the atomic parts.
In order to prevent this, the MP-algorithm does not look for
an arbitrary weight vector, but the minimal one.

Since detecting the minimal weighted set is an NP-complete
problem [13], the MP-algorithm instead uses an approximated
sub-optimal minimal set:

matchingPursuit(sample, dictionary) {
int[] weights = new[len(dictionary)]
sound = sample
do {
weight, strongest =

(FROM dictionary d
SELECT (weight(sound, d), d)
ORDER BY weight(sound, d) DESC)[0]

weights[index(strongest)] = weight
sound -= strongest * weight

} while (strength(sound) > threshold)
return

}

The algorithm always picks out the strongest-weighted fit,
and then subtracts this fit from the sound. This is repeated
until the sound does not contain anything else but irrelevant
noise. An graphic example is provided in figure 10.

Fig. 10. *
(1) The environment sound, combined out of several distinct
sections
(2) A 100% match which is found first when MP
(3) Partial match which is found in the remaining sound bits
(4) Sinusoidal component that makes up the remaining sound,
and is weightened less strongly as it would otherwise have a
stronger amplitude than the original sound

It is obvious that the dictionary should consist out of distinct
sounds, as otherwise errors in detection may occur. To do so,
one can e.g. use the Gaborfunction which provides distinct
atoms [7], [13].

As the resulting fingerprint is close to being minimal, com-
parison is simpler as similar sounds will end up with the same
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classification, and confusion through too many classification
features is kept to a minimum.

C. Advantages

1) Time is not an issue: Since this technique does not focus
on time of flight, time delays, line of sights and the other issues
mentioned previously cannot occur with this technique.

2) Visual aid: Instead of just relying on sound, the feature-
base can also be enhanced with additional information avail-
able on standard smartphones in order to increase accuracy
and robustness.

D. Problems

1) Processing cost: Calculating the minimal set of
weighted sounds can require a lot of processing power, and
thus might be inappropriate for small handheld devices –
especially if localization is run periodically in the background.

2) Fingerprint Database: A fingerprint database has to
be created and stored in an accessible way. Maintaining the
database by keeping it up to date can cause severe cost,
although automated update/merge algorithm can help against
fingerprints [13] getting outdated.

3) Distinctness required: The algorithm assumes that dif-
ferent places are very different in their ambient sound levels.
This might work in a mall, but can be an issue in an office
environment where all rooms look and sound similar.

VIII. MATERIAL SPECTRUM LOCALIZATION

Another technique, called “Symbolic Object Localization”
by Kai Kunze et al. [12], is similar to the Background
Spectrum analysis as it also analyzes the features of a sound.
However, instead of relying on a collection of ambient sounds,
this technique actively probes the environment on a set of
different frequencies by playing different sounds, and records
the feedback/echo of the probes.

The feedback is then analyzed to determine a set of charac-
teristic properties for the environment - in this case a specific
material on which the probing device, e.g. a smartphone,
resides. By comparing the detected fingerprint with existing
fingerprints, one can decide on the closest matching fingerprint
in the database, and return this as the localization result.

A. Probing range

When sending out a sinusoidal probing sound at a certain
frequency by the speaker of the smartphone, the response
might look similar to what can be seen in figure 11.

Fig. 11. An examplary sound wave (pressure over time) resulting from a
sinusoidal probe with increasing frequency

Fig. 12. Spectrum analysis via FFT (see section III-A2). The highest energy
is present in the 0Hz − 1.5KHz range

When considering the spectrum analysis, and comparing dif-
ferent materials, it becomes obvious that most of the relevant
energy is present in the band from 0Hz − 4096Hz. Since
the echo response greatly depends on the probing frequency,
the material has to be probed at different steps in this band in
order to create a characteristic fingerprint for an material (cf.
figure 13).

material response frequency highest energy
concrete, unpainted 1059Hz 0.035
brick wall, painted 1223Hz 0.025
carpet on concrete 1114Hz 0.037

Fig. 13. Spectrum statistics for different materials when probed at the 0Hz−
4096Hz band (chart compiled from data presented in [12] using median, page
5)

It becomes obvious that – even though the materials in
question are fairly similar – their median frequency and energy
is rather distinct, and therefore provides a good basis for
classification. Similar materials can also be distinguished by
other objects in the area: A monitor put onto a desk will
significantly change its material echo properties.

[7], [12]

B. Database

In order to retrieve localization results from the gathered
finger prints, the probing device needs to have access to a
database of existing fingerprints. We distinguish between two
different kinds of reference fingerprints:

1) Specific/trained fingerprints: Similar to the approach
presented in the “Background Spectrum” technique, one can
compare the fingerprint with fingerprints representing specific
logical locations, e.g. “kitchen desk in BC 203”, or “my
table at home”. Since each of these locations is likely to
have a different material characteristics, success rates of up
to 70% have been reported when using a reasonable number
of reference fingerprints (cmp. [12]).

The advantage is obvious: Users can set up the system for
their own need. The less reference fingerprints are available,
the lower the chance of polluting localization result since the
Hamming distance between all fingerprints is higher.
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2) Symbolic fingerprints: As the setup cost for the previous
approach might be too high, another approach is to stick
with abstract localizations like “wooden table”, “in pocket”,
“concrete floor”, “bathtube full of water”2. Since the materials
available in every day life are fairly common, the system can
thus be pre-trained. This kind of localization can be enough for
systems that do not need any logical localization, or where the
logical context is provided by the user (“put phone on vibrate
when in pocket”).

3) Increasing accuracy: Since most smart phones are ca-
pable of vibrating, one can also use the vibrator instead of
the speaker to probe lower frequencies. As the signal emitted
by the vibrator is much stronger, the response can be more
distinct.

C. Limitations

This technique falls with the number of reference finger-
prints and their similarity. If, by any chance, your work desk
has the exact same material characteristics as your desk at
home, this technique will fail to detect the proper location.
This can be an issue as it is not a predictable error, but one that
depends on the context in which this localization technique is
used.

Also, probing all different frequencies of a material can
take up significant time (roughly 8 seconds for the band
proposed here, [12]), and thus does also put a high power
load onto the phones battery.

IX. CONCLUSION

The different techniques described in this paper all have
advantages and disadvantages. One huge advantage of all
sound-based localizations is that nearly every user carries
around a mobile device capable of playing and recording
sounds, and thus the need for extra hardware is minimal.
As the need for context-awareness is all present for mobile
applications, it makes sense to further invest into this area.

On the other hand one has to consider that all techniques
have their limitations: Some are very susceptible to noise;
others may perform well in some situations, but terrible on
others, providing an unpredictable pattern. This is why it is im-
portant to not only focus on one single technique, but instead
combine all techniques proposed here into one to provide an
accurate and reliable basis for localization. A similar approach
is already taken by modern smartphones when it comes to
outdoor positioning: Positions are approximated and enhanced
using GSM based locations, and nearby WiFi hotspots, and
are made exact using GPS – when available. We propose that
a similar approach should be taken when it comes to audio
localization.

Also, instead of just focusing on acoustic localization, the
accuracy can be improved further by taking into account all
sensors available on a smartphone. The ambient sound image
can e.g. be enhanced using visual aids [9].

2Using this kind of localization might require a water-proof smartphone.
Test at own risk.

If all of these suggestions are implemented, there is nothing
in the way stopping location-awareness for mobile devices
from becoming present and useful in everyday life.
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